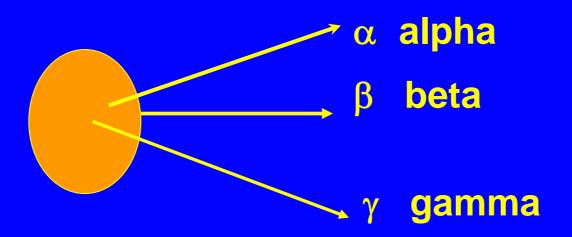

Nuclear Radiation

Natural Radioactivity
Nuclear Equations
Producing Radioactive Isotopes
Half-Life
Nuclear Fission and Fusion

Subatomic Particles

Protons- plus charge


In the nucleus

Neutrons- neutral

Electrons - negative charge
 Outside the nucleus

Radiation

- Radiation comes from the nucleus of an atom.
- Unstable nucleus emits a particle or energy

Alpha Particle

```
Same as a helium nucleus (He)
```

4

₂He or α

Two protons
Two neutrons

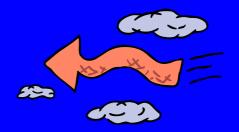
Beta Particle β

An electron emitted from the nucleus

e or
$$\beta$$

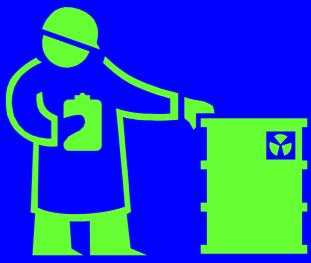
A neutron in the nucleus breaks down

1 1 0

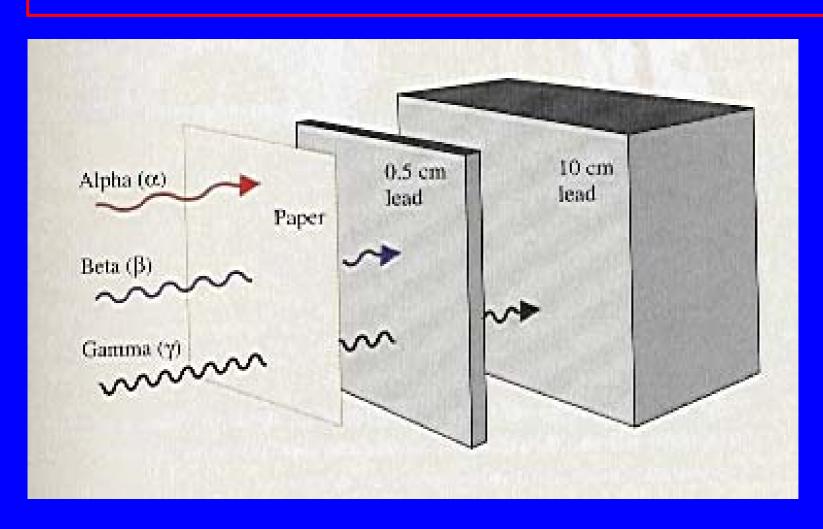

n H + e

0 1 -1

Gamma y Radiation


Pure radiation

Like an X-ray but comes from the nucleus



Radiation Protection

- Shielding
 - alpha paper, clothing
 - beta lab coat, gloves
 - gamma-lead, thick concrete
- Limit time exposed
- Keep distance from source

Radiation Protection

Balancing Nuclear Equations

In the reactants and products

Atomic numbers must balance and Mass numbers must balance

Alpha decay

$$^{238}_{92}U \longrightarrow ^{234}_{90}Th + ^{4}_{2}He \quad (\alpha \text{ decay})$$

Beta decay

Gamma radiation

No change in atomic or mass number

$$^{11}B$$
 ^{-11}B + $^{0}\gamma$
 5 5 0

boron atom in a high-energy state

Learning Check NR1

Write the nuclear equation for the beta emitter Co-60.

Solution NR1

Write the nuclear equation for the Beta emitter Co-60.

60
Co 60 Ni + 0 e 27 28 -1

Producing Radioactive Isotopes

Bombardment of atoms produces radioisotopes

$$= 60$$

$$^{59}Co + ^{1}n$$

$$^{27} = 27$$

$$= 27$$

$$= 27$$

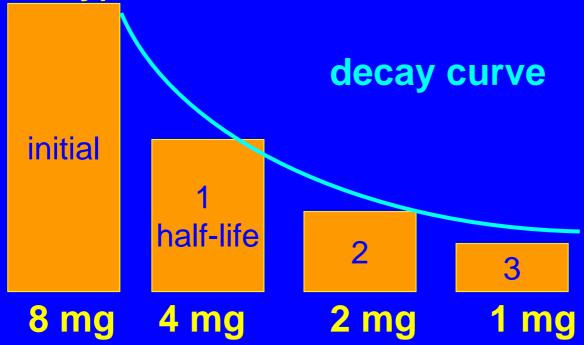
$$= 27$$

cobalt neutron atom

manganese alpha radioisotope particle

Learning Check NR2

What radioactive isotope is produced in the following bombardment of boron?


$$^{10}B + ^{4}He \longrightarrow ? + ^{1}n$$
5 2

Solution NR2

What radioactive isotope is produced in the following bombardment of boron?

Half-Life of a Radioisotope

The time for the radiation level to fall (decay) to one-half its initial value

Examples of Half-Life

Isotope Half life

C-15 2.4 sec

Ra-224 3.6 days

Ra-223 12 days

I-125 60 days

C-14 5700 years

U-235 710 000 000 years

Learning Check NR3

The half life of I-123 is 13 hr. How much of a 64 mg sample of I-123 is left after 26 hours?

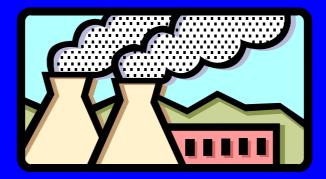
Solution NR3

```
t_{1/2} = 13 hrs

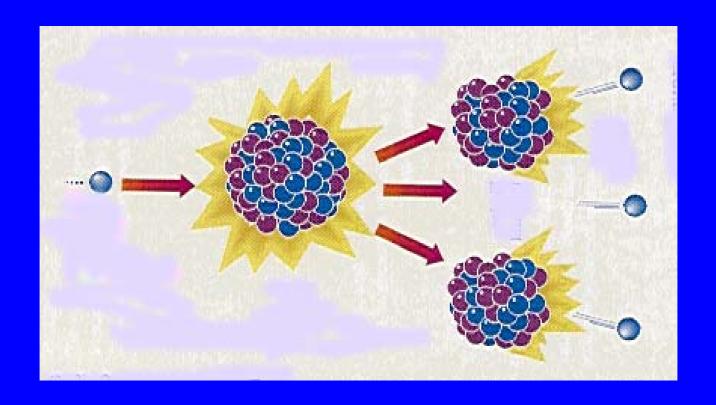
26 hours = 2 x t_{1/2}

Amount initial = 64 mg

Amount remaining = 64 mg x \frac{1}{2} x \frac{1}{2}


= 16 mg
```

Nuclear Fission


Fission

large nuclei break up

235U +
$$^{1}n$$
 \longrightarrow ^{139}Ba + ^{94}Kr + $^{3}^{1}n$ + Energy 92 0 56 36

Fission

Nuclear Fusion

Fusion

small nuclei combine

$$^{2}H$$
 + ^{3}H \longrightarrow ^{4}He + ^{1}n
1 1 2 0

Occurs in the sun and other stars

Energy

Learning Check NR4

Indicate if each of the following are

(1) Fission

(2) fusion

- B. Large amounts of energy released
- C. Small nuclei form larger nuclei
- D. Hydrogen nuclei react

Energy

Solution NR4

Indicate if each of the following are
(1) Fission (2) fusion

- A. 1 Nucleus splits
- B. 1 + 2 Large amounts of energy released
- C. 2 Small nuclei form larger nuclei
- D. 2 Hydrogen nuclei react